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\ ABSTRACT

All available test data on the standard hypersonic ballistic correla-
tion models, HB-1 and EB-2, ha,vewbeeﬁl'examined to establish reference
characteristics for use in the correlation of experimental results among
the various aerodynamic facilities. The data presented are comprised
primarily of static stability and zero-lift forebody axial-force coefficient
results at Mach nyx;;(@gg; from about 1.5 to 20 for a Reynolds number
range from 0. 01 {642,9-%-106 based on centerbody diameter. Selected
pressure distribution, dynamic stability, and heat-transfer data are in-
cluded. Comparisons of data from various test facilities show excellent
correlation in spite of the appreciable Reynolds number dependence of
test results for model HB-2 with natural boundary-layer transition.{_ )
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NOMENCLATURE

Reference area, 7rd2/4, in.2

Base area, in.2

Chapman-Rubesin constant, u T, /Ty

Zero-lift forebody axial-force coefficient, (Cp¢-CAp)
Zero-lift bace axial-force coefficient, Cpb(Ab/A)

total axiai force
g, A
Pitching-moment coefficient (reference at 1, 95d from nose),

pitching moment
g, Ad

Total zero-lift axial-force coefficient,

Damping-in-pitch derivative, 3 Cyy/a(qd/2V,_), 1/rad
Damping-in-pitch derivative, 9 Cm/d(ad/2V,), 1/rad

normal force
QB

Normal-force coefficient,

Slope of normal-force curve, (GCN/ aa) a =0

Pressure coefficient, (p - p.)/ 9%

Base pressure coefficient (py- Po) /9w

x
Local axial-force coefficient, (2/A )of Cpr tan 0 d¢, 1/in.

7
Local normal-force coefficient, (2/A) f Cpr cos ¢ dé, 1/in.
o T

Sting diameter at model base, in.

Reference centerbody diameter (see Fig. 1), in.
Length of sting of constant diameter, D, in.
Overall model length (4.9d), in.

Free-stream Mach number

Surface pressure, psia

Free-stream pressure, psia

Base pressure, psia
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P I S

Model stagnation pressure, psia
Pitching velocity, rad/sec
Free-stream dynamic pressure, (v/2) p, M,z, psia

Heat-transfer rate relative to model stagnation point heat-
transfer rate

Reynolds number based on centerbody diameter and free-
stream conditions

Blunted nose radius (0. 3d), in.
Model radius, in.

Wetted length, in,
Free-stream temperature, °R
Wall temperature, °R

Free-stream velocity, ft/sec

Viscous parameter, M,‘f C,,,/ v Reg

Axial distance, in.
Center of pressure, [1. 95 - (de/dCN) o= O]d/ £

Angle of attack, deg

Time rate-of-change of @, rad/sec
Sting windshield half-angle, deg
Ratio of specific heats

Angular displacement, deg

Viscosity of air evaluated at free-stream temperature,
1b-sec/ft2

Viscosity of air evaluated at wall temperature, lb-sec/ £t 2
L ocal surface inclination, deg
Circumferential position, deg

Angular frequency, rad/sec

S
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1.0 INTRODUCTION

The necessity for a standard for the evaluation of data obtained in
aerodynamic test facilities is well recognized. Such a standard may be
established through the use of identical calibration models in the
greatest number of test facilities.

Through an appreciation of the many fundamental factors involved
and an awareness cf the characteristics of the instrumentation used, a
realistic confidence in the validity of test data may be then established.
The Advisory Group for Aeronautical Research and Development (AGARD)
calibration models are well-known examples of the utility of this approach
(Ref. 1).

The desire for a ballistic correlation model was first voiced at the
joint meeting of AGARD and STA (Supersonic Tunnel Association) held in
France during September 1959, and the initiative for selecu;ng a suitable
configuration was assumed by Lukasiewicz of the von Karman Gas Dy-
namics Facility (VKF), Arnold Engineering Development Center (AEDC),
Air Force Systems Command (AFSC). This resulted in adoption by the
STA, in March 1960, of two hypervelocity ballistic model configurations,
designated HB-1 and HB-2 (Fig. la), which consisted of a blunt cone-
cylinder with and without a flare. The latter shape was included to pro-
vide a model that would be less sensitive to viscous effects and that would
alsc aid in the evaluation of these effzcts. A model support sting geom-
etry was also specified as to the maximum diameter and minimum length
necessary to provide turbulent base pressure data essentially free of
interference (Fig. 1b). These configurations were also submitted for the
consideration of the AGARD Fluid Dynamics Panel; at its July 1963 meet-
ing this panel expressed interest in the addition of these models to the
AGARD series of standard models, pending review of the already avail-
able data on shapes HB-1 and HB-2.

Since the publication of Ref. 2, some additional tests with Models
HB-1 and HB-2 have been conducted at the VKF as well as by other
organizations. It appears, therefore, that a diverse enough sampling of
test measurments has become available to justify a comparison of data.
To date, other organizations have tested only the HB-2 configuration with
the predominant emphasis being on force measurements.

In particular, the new data consist of force measurements in the
12-in. hypersonic tunnel (Gas Dynamic Wind Tunnel, Hypersonic (E)) and

Manuscript received June 1964.
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50-in. hypervelocity tunnel (Gas Dynamic Wind Tunnel, Hypersonic (H))
and selected pressure measurements in the 40-in. supersonic tun-

nel (Gas Dynamic Wind Tunnel, Supersonic (A)), the 50-in. hypersonic
Tunnel B, and Tunnel H of the VKF. Data from other organizations con-
sist notably of force results from ONERA in France (Ref. 3), as well as
the Sandia Corp. (unpublished) and RARDE (Ref. 4). Some pressure
distribution results were obtained by the Douglas Aerophysics Labora-
tory (DAL) (Ref. 5) as well as ONERA. In addition, some VKF dynamic
stability measurements at supersonic speeds and heat-transfer data at
Mach 18 are also included. Pertinent details of the test conditions may
be found in Table 1.

2,0 TEST EQUIPMENT

Both configurations are axisymmetric, blunted cone-cylinders
distinguishable by the addition of a flare to the HB-1 model to yield the
HB-2 model. The geometry of these shapes is detailed in Fig. 1a, and
it may be noted that the junctures of the nose and flare with the cylinder
are made by smooth radius fairings. As a matter of interest, the

tangency locations for the various sections of the HB-2 configuration are

given below:

Tangency Locations
Section x/4
Hemisphere-Cone 0.0353
Cone-Shoulder 0.1064"
Shoulder-Cylinder 0.167
Cylinder-Radius 0.583
Radius-Flare 0. 725

As shown in Table 1, many model sizes have been tested, and it is
believed that all conform to the geometry shown in Fig. la. Obviously
there are small variations to be expected among the models; however,
it is considered that they are the usual fabrication tolerances and thus
should be a negligible source of discrepancies because of the blunt nose.

All test models were supported by a sting, the geometry of which was
a variable among the various tests, as detailed aleo in Table 1. The
sting proposed by the STA (Fig. 1b) was specified to have a constant diam-
eter no more than 0. 3d for a length of at least 3. 0d with a windshield of
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20-deg half-angle in order tc ensure negligible interference on the base
pressure for turbulent flow.

Only test data for which the model was ''smooth" are presented;
thus, transition location was freely determined by the test facility and
model conditions. Only the French (Ref. 3) have investigated the effect
of roughness to fix transition; these data are not included herein.

All of these test results were obtained in the wind tunnels briefly
described in Table 1. More information on the tunnel characteristics
may be found in the references cited.

Inasmuch as diverse facilities are involved in the comparisons to
be made, any quotations regarding measurement precision are con-
sidered of little value, especially since the basic data required are
generally unavailable. It is indeed unfortunate that no widely accepted
and common method exists for evaluating data precision as applied to
wind-tunnel testing. In certain cases where deviations are clearly re-
lated to precision, they will be so noted in the discussion. Otherwise,
it is considered that precision is only one of many indeterminate values
being judged by the comparisons.

3.0 RESULTS AND DISCUSSION

3.1 FORCE MEASUREMENTS

The normal-force and pitching-moment coefficient characteristics
of model HB-1 are shown in Figs. 2 and 3. At most Mach numbers, data
from two facilities and two model sizes are available for comparison,
whereas at Mach 5 and 8 results from several sources are compared.
The Reynolds numbers wer- selected as close as possible to being the
same at each nominal Mach number; thus, the differences shown should be
attributable, for the most part, to precision of measurement factors.
With the exception of C, at Mach 2 (Fig. 3a), the curves have been faired
with due consideration given all sources to establish a correlation of the
data. Although a significant discrepancy in Cp, at M, = 2 exists for the
4. 0-in. model, a thorough examination of all possible causes failed to re-
veal a satisfactory reason. As will be documented later in Figs. 6 and 7,
these curves may be considered applicable for a fairly broad Reynolds
number range.

The static stability characteristics of HB-2 are documented in
Figs. 4 and 5. More data are available for comparison because of the
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extensive tests reported by the ONERA for the HB-2 model. As a matter
of interest and additional verification, values derived from integration of
longitudinal-circumferential pressure distributions (Ref. 9) are included
for a nominal 10-deg angle of attack. In general, it appears that excel-
lent agreement exists between the force data. The most significant dif-
ferences are apparent for the pitching-moment coefficient in the hyper-
sonic range, M, >:6. However at Mach 8, for example, the variations
in Cm for o'\~ 12 deg (see Fig. 5b) amount to less than a +3-percent
variation in center of pressure.

Inasmuch as the forebody axial force is not greatly influenced by
angle-of-attack variation, a comparison of angle-of-attack data is con-
sidered unnecessary. However, typical Mach number effects on Cp
versus @ may be found in Ref. 1. It is shown that CA decreases slightly
with a for Mg < 3, whereas it increases with angle of attack at Mach num-
bers above 3.

The influence of Reynolds number on the parameters Cy,, Xcp/ s
CA, and CAb are shown in Figs. § through 9 for model HB-1 and in
Figs. 10 through 13 for model HB-2. With regard to the influence on
test data for model HB-1, it may be said, in general, that the Reynolds
number effect is quite small. At Mach 20, however, the forebody drag
(Fig. 8b) is especially sensitive to Reynolds number variations because
of the large friction contribution associated with the very low local Reyn-
olds numbers. Fewer data are shown for base drag in Fig. 9a, since
those data are excluded for which the sting did not approach the specifi-
cation. The base drag coefficient appears to be rather insensitive to
Reynolds number, when considering the trends for Mach 8 and 10.

Conversgely, model HB-2 aerodynamic characteristics are shown in
Figs. 10, 11, and 12 to be significantly dependent upon the Reynolds
number. At supersonic speeds (M, < 5), these effects are caused by the
occurrence of laminar boundary-layer separation induced by the inter-
action of the boundary layer with the adverse pressure gradient at the
flare. Pitching perturbations produce circumferential variations in the
extent of separation, thus causing abnormal differential pressure loadings,
particuiarly in the region near reattachment. Since the relative extent of
this separation is an inverse function of the Reynolds number (Ref. 10),
the variations are to be expected. At hypersonic speeds, fl:w separations
tend to disappear, but when they do exist the longitudinal pressure gra-
dients are significantly less than those found at intermediate supersonic
speeds. Thus, the rapid changes in pressure between the windward and
leeward sides of the flare do not occur. As a consequence, Reynolds
number has a small effect on the initial normal-force curve slope above
Mach 5 (see Fig. 10b). The initial center-of-pressure locaticn is affected
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in a similar manner, of course, as is evident in Fig. 11. From these
data in Figs. 10 and 11, it may be observed that the agreement among
the various data sources is excellent; hence, the fairings are judged
to be suitable reference correlation curves.

The forebody axial-furce coefficient of model HB-2 at zero lift is
given in Fig. 12 as a function of Reynolds number, Req, for the Mach
number range, 1.5 to 20. Wave drag coefficients (pressure integra-
tions) at maximum Reynolds number, primarily from Ref. 9, are in-
cluded and show, as expected, that the friction drag is nearly insignifi-
cant at these Reynolds numbers up to Mach 8. An interesting difference
in the influence of Reynolds number is shown by the data at Mach
numbers greater than and less than Mach 5. At low supersonic speeds,
for example Mach 3, decreasing Reynolds number is in the direction for
increasing extent of flow separation. Flow separation as well as
thickened boundary layers decrease the initial pressure rise on conical
frustums; thus, the forebody axial-force covefficient would be expected to
decrease with a reduction in Reynolds number because the drag contri-
bution of the flare is correspondingly reduced. However, at hypersonic
speeds the flare pressure distribution is basically unaffected by com-
parable Reynolds number variations (see Fig. 17). Hence, the wave drag
remains nearly fixed, and the low local Heynolds number, which is caused
by the incieased bow-wave total pressure losses, now produces a rela-
tively large skin friction contribution which is the reason for :.1 increasing
drag coefficient as Reynolds number is reduced. That this effect becomes
quite appreciable is especially clear at M, 2 16, which is shown in
Fig. 12b. These data as well as the data for HB-1 from Fig. 8b are re-
plotted in Fig. 13 in terms of the viscous interaction parameter, v,. It
should be noted that for infinite Reynolds number {when ¥V, equals zero)
these data extrapolate to the value indicated for the wave drag only.

The base axial-force coefficient variation (for a = 0 deg) with Reyn-
olds number is indicated in Fig. 14 for model HB-2. Since the data at
each Mach number are fairly limited, a true correlation is nct pcssibie.
However, the data at Mach 5 and 8 indicate that excellent correlation is to
be anticipated.

The effect of Mach number on the parameters discussed is shown in
Fig. 15 for both model HB-1 and model HB-2 at the condition of maximum
Reynolds number as indicated by the double abscissa. For reference, the
magnitude of these parameters as predicted by the modified Newtonian
theory at Mach 10 is indicated. Only the drag-is closely estimated. The
declining base drag contribution at high Mach numbers is particularly
evident in Fig. 15¢; however, the trend ai Mach 10 suggests that the
assumption of zero base drag for Mach 20 may not entirely be justified.
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It should be noted that these base drag data were obtained by measuring
the cavity pressure inside the model.

Dynamic stability data for model HB-2 are shown in Fig. 16 in
terms of the damping-in-pitch derivatives versus Reynolds number at
Mach 2, 3, and 4. These data were obtained by Ward of the VKF using
a small-amplitude, forced-oscillation, balance system which incorpo-
rates a cross flexure for pitch oscillations only. The data were obtained
at the natural frequency of the model-balance system and were correcled
for model damping in still air. Although no other results are available,
these data show the usual decrease of damping-in-pitch with Mach number
increase and a pronounced dependence-on Reynolds number at Mach 4.

3.2 PRESSURE AND HEAT-TRANSFER MEASUREMENTS

Selected longitudinal pressure dist..vution results for zero-degree
angle of attack are presented in Fig. 17 for Mach numbers from 1.5 to 18
at high and low Reynolds numbers. Although more detailed results may be
found in Ref. 9, these data show the variation of the Reynolds number in-
fluence with Mach number for model HB-2. Since the flare angle is
small, only laminar flow separations are possible (Ref. 10). The first
indication of separation is to Ye noted at Mach 2 by the slight pressure in-
crease near the beginning of the flare (x/£ =~ 0. 6). This is the plateau
pressure rise caused by the stable reverse flow region ahead of the flare.
This pressure rise clearly increases at Mach 3 and 4 for the low Reynolds
number condition. Since there is no flow separation at the maximum
Reynolds number, the boundary layer obviously was turbulent. At Mach 5,
flow separation was present even at the maximum Reynolds number, since
boundary-layer transition was delayed sufficiently by the Mach number in-
crease. However, data at Mach 8 and 18 demonstrate quite clearly the
elimination of laminar flow separation through the influence exerted by the
appreciable Mach number increase. Thus, as noted already in Figs. 10
and 11, significant Reynolds number effects caused by flow separation are
to be expected only in the supersonic speed range.

Data obtained at only Mach 8 and 20 are currently available for
model HB-1, and these are given in Fig. 18. They are also included in
Fig. 17 to illustrate better the flare pressure rise. A comparison of
available pressure data is made in Fig. 19. The differences are negli-
gible at Mach 2 and 3, whereas they become increasingly pronounced with
Mach number. This situation exists simply because of the resolution
capabilities of the transducer system employed. At Mach 8, however, a
higher resolution transducer was used for stations at x/£ = 0. 16, 0. 30,
and 0. 45, and the agreement is markedly improved. The agreement,




however, is much better Letween the ONERA Mach 16. 5 data and VKF
data at Miach 18 because the transducers used were chosen specifically
for one pressure range.

The only reliable heat-transfer data presently available are those
at zerc lift, for about Mach 18, shown in Fig. 20. Results for both
models are presented in terms of the heat transfer relative to the s't.ag-
nation level versus the nondimensional surface distance. The heat-
transfer rates, which were measured with calorimeter-type gages, for
both models are in excellent agreement.

Longitudinal pressure distributions at three circumferential posi-
tions are given in Fig. 21, at an angla of attack of approximately 10 deg,
for model HB-2. The corresponding distributions of local normal-force
coefficient and local axial-force coefficient are shown in Fig. 22. It
may be observed that at Mach 3 or greater the load distributions are
qualitatively the same.

4.0 CONCLUSIONS

All of the available experimental results on the standard ballistic
models HB-1 and HB-2 Fave been examined in some detail to establish
correlation curves which document the aerodynamic performance of
these configurations. A few general observations, to highlight the most
noteworthy characteristics of these models, follow:

1. Although the aerodynamic parameters for model HB-1 are only
slightly affected by Reynolds number, the greatest effect is ob-
served on drag at Mach 20. Mach number variations change the
stability parameters to an appreciable extent for M, < 5,
whereas the zero-lift forebody axial-force coefficient is rela-
tively invariant for M, < 10.

2. Because of laminar boundary-layer separation, all aerodynamic
{stability and drag) parameters for model HB-2 in the supersonic
range (2 < M, <5) are sensitive to Reynolds number variations;
however, the datz are satisfactorily correlated by the Reynolds
number, Rey, at all Mach numbers regardless of model size.

At high Mach numbers (M_ > 8) the zero-lift axial-force coef-
ficient becomes sensitive to Reynolds number variation because
of viscous effects.

3. In general, excellen! correlation was found among the test data
from various faciiities in the United States and France, and from
from one facility in England.
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